Monthly Archives: Январь 2015

Уравнение прямой на плоскости. Примеры решения типовых задач. Часть 4

Задача № 1. Составить уравнения прямых, параллельных прямой x-3y=0 и отсекающих от двух пересекающихся прямых Зх-2у-1=0, 4х-5y+1=0 треугольник, площадь которого равна 7/2.
Решение. Уравнения искомых прямых будут х-3у+с=0.
up130

Рис.1

Коэффициент с определим, использовав площадь треугольника.
Найдем координаты вершин треугольника, имеющего площадь 7/2, для чего решим следующие системы уравнений:
up132
Решаем первую, вторую и третью системы уравнений.
Получим координаты точек: А (1; 1),
up134
Подставив в эту формулу соответствующие значения
up136
Подставив в эту формулу соответствующие значения х₁, х₂, х₃ и у₁, у₂, у₃ получим выражение площади
up138
По условию площадь этого треугольника равна 7/2, т. е.
up140
или
up142
Так как квадрат действительного числа не может быть отрицательным, то рассмотрим только уравнение
(с —2)² = 49. Решим его: с-2=±7, с₁=2+7=9, c₂=2-7=-5.
Таким образом, уравнениями искомых прямых будут уравнения: х-3y+9=0 и х-Зу-5=0. (рис.1).
Ответ: х-3y+9=0, х-Зу-5=0.
Решение этой задачи подробно изложено в следующем видео

Задача № 2. Найти полярное уравнение прямой, если:
1) Угол наклона прямой к полярной оси равен 1/6π, а длина перпендикуляра, опущенного из полюса на эту прямую, равна 3.
2) Отрезок, отсекаемый прямой на полярной оси, равен 2, а полярный угол нормали этой прямой равен -2/3π.
3) Угол наклона прямой к полярной оси равен 1/6π и отрезок, который отсекает прямая на полярной оси, равен 6.
Решение этой задачи подробно изложено в следующем видео

Уравнение прямой на плоскости. Примеры решения типовых задач. Часть 3

Задача № 1. Составить уравнение прямой, если известно, что ее расстояние от начала координат равно 13, а угол, образованный перпендикуляром, опущенным с начала координат на прямую, и осью Ох, равен 225°.
Решение этой задачи подробно изложено в следующем видео

Задача № 2. Провести прямую через точку Р (3;-4), являющуюся основанием перпендикуляра, опущенного из начала координат на прямую.
Решение этой задачи подробно изложено в следующем видео

Задача № 3. Найти геометрическое место точек, отклонение которых от прямой 6х-8y+5=0, равно 5.
Задача № 4. Найти геометрическое место точек, расстояние которых от прямой 5х-12у-13=0 равно 3.
Решения этих двух задач подробно объясняются в следующем видео:

Задача № 5. Две стороны квадрата лежат на прямых 4х-Зу+15=0 и 8х-6y+25=0. Вычислить его площадь.
Задача № 6. Доказать, что через точку Р(2;7) можно провести две прямые так, чтобы их расстояния от точки Q(1;2) были равны 5. Составить уравнения этих прямых.
Решения этих двух задач подробно объясняются в следующем видео:

Задача № 7. Составить уравнения прямых, перпендикулярных к прямой 2х+6y-3=0 и отстоящих от точки (5;4) на расстоянии V10 ед.
Решение этой задачи подробно изложено в следующем видео

Задача № 8. На прямой х+у-8=0 найти точки, равноудаленные от точки (2;8) и от прямой х-Зy+2=0.
Решение этой задачи подробно изложено в следующем видео

Задача № 9. Найти биссектрисы углов между прямыми Зх+4у-1=0 и 4х-Зy+5=0.
Решение этой задачи подробно изложено в следующем видео

Задача № 10. Даны вершины треугольника А (2; —2), В (3; -5) и С (5; 1). Составить уравнение перпендикуляра, опущенного из вершины С на биссектрису внутреннего угла при вершине В.
up118

Рис. 1

Решение. Чтобы составить уравнение перпендикуляра CD (рис.1), опущенного на биссектрису BD, необходимо знать угловой коэффициент BD. Для этого достаточно найти координаты точки L, которая согласно свойству биссектрисы внутреннего угла треугольника делит сторону АС в отношении
up120
Для определения λ необходимо найти длины сторон АВ и ВС, которые находим по формуле расстояния между двумя точками.
up122
Таким образом, up124
Координаты точки L найдем по формулам деления отрезка в заданном отношении:
up126
Угловой коэффициент BD найдем по формуле
up128
Следовательно, биссектриса BD перпендикулярна к оси Ох.
В таком случае прямая CD будет параллельна оси Ох, ее уравнение у = b, где b — ордината точки, через которую проходит прямая. b=1.
Таким образом, уравнением перпендикуляра CD будет уравнение у = 1, или у —1=0.
Ответ: у —1=0.
Решение этой задачи подробно изложено в следующем видео

Уравнение прямой на плоскости. Примеры решения типовых задач. Часть 2

Задача № 1. При каких значениях m и n прямая (m-3n-2)x+(2m+4n-1)y-3m+n-2=0 отсекает на оси Ox отрезок, равный 3 ед. масштаба, а на оси Oy отрезок, равный (-2).
Задача № 2. Через точку М (2;-1) провести прямую параллельно прямой 2x+3y=0.
Решение. Угловой коэффициент искомой прямой согласно условию параллельности должен быть равным угловому коэффициенту данной прямой: y=-2/3, k=-2/3.
up092

Рис.1

Составим уравнение искомой прямой по формуле: y-y₁= k(x—x₁)

Уравнение прямой на плоскости. Примеры решения типовых задач. Часть 1

Задача № 1. Построить прямую у = 2х—3.
Общий метод построения прямой. Положение прямой на плоскости определяется двумя точками, принадлежащими этой прямой. Для построения прямой достаточно знать координаты двух произвольных точек прямой. Для этого вычисляем значения у по данному равенству у=2х—3 при произвольных значениях x.
up062

Рис.1

Пусть для значения х=1 соответствует (y=2·1-3=-1 и пусть для х = 2 значение у примет y = 2·2-3=1.
Составляется следующая таблица:
х | 1| 2|
у |-1| 1|
Таким образом, через полученные две точки, координаты которых (1; —1) и (2; 1), строим прямую (рис.1).
Задача № 2. Построить прямую 5х-Зy+15 = 0.

загрузка...

Уравнение прямой на плоскости (формулы)

Уравнением прямой называется такое уравнение первой степени с переменными х и у, которому удовлетворяют координаты любой точки этой прямой. Уравнение вида
up002
называется общим уравнением прямой.
Уравнение прямой, разрешенное относительно переменной у, т. е. уравнение вида
up004
называется уравнением с угловым коэффициентом. Параметр k называется угловым коэффициентом и равен тангенсу угла наклона прямой к оси Ox, k= tg φ.
Параметр b — величина отрезка, отсекаемая прямой (2) на оси Оу, считая от начала координат.

Решебник к сборнику контрольных работ по алгебре для 9 класса Александровой Л.А. ОНЛАЙН

Решения контрольных работ по алгебре из сборника для 9 класса Александровой Л. А. Рукопись. - 2015.
Настоящее пособие содержит решения контрольных работ из сборника "Александрова Л. А. Алгебра. 9 класс. Контрольные работы для учащихся общеобразовательных учреждений / Л. А. Александрова ; под ред. А. Г. Мордковича. — 3-е изд., испр. и доп. — М. : Мнемозина, 2010. — 32 с."
Сборник контрольных работ предназначен для тех учителей математики, которые используют в своей преподавательской деятельности УМК, созданный авторским коллективом под руководством А. Г. Мордковича.
Страницы решебника представлены в виде слайдов. Кликните на нужный слайд, чтобы прочитать содержание страницы.

Решебник к сборнику контрольных работ по алгебре для 8 класса Александровой Л.А. ОНЛАЙН

Решения контрольных работ по алгебре из сборника для 8 класса Александровой Л. А. Рукопись. - 2015.
Настоящее пособие содержит решения контрольных работ из сборника "Александрова Л. А. Алгебра. 8 класс. Контрольные работы для учащихся общеобразовательных учреждений / Л. А. Александрова ; под ред. А. Г. Мордковича. — 3-е изд., испр. и доп. — М. : Мнемозина, 2009. — 40 с."
Сборник контрольных работ предназначен для тех учителей математики, которые используют в своей преподавательской деятельности УМК, созданный авторским коллективом под руководством А. Г. Мордковича.
Страницы решебника представлены в виде слайдов. Кликните на нужный слайд, чтобы прочитать содержание страницы.