Monthly Archives: Февраль 2015

Векторное произведение двух векторов

Векторным произведением вектора \vec{a} на вектор \vec{b} называется новый вектор с, длина которого численно равна площади параллелограмма, построенного на векторах \vec{a} и \vec{b}, перпендикулярный к плоскости этих векторов и направленный в такую сторону, чтобы кратчайший поворот от \vec{a} к \vec{b} вокруг полученного вектора \vec{c} представлялся происходящим против часовой стрелки, для правой системы координат, если смотреть с конца вектора \vec{c}.
vekt024

Рис.1

Векторное произведение обозначается символом

Скалярное произведение двух векторов

Скалярным произведением двух векторов называется число (скаляр), равное произведению их длин, умноженному на косинус угла между ними (рис.1).
Скалярное произведение обозначается одним из трех способов

\vec{a}\cdot \vec{b}=\vec{ab}=\vec{\left(ab \right)}.


Если угол между векторами \vec{a} и \vec{b} обозначить через φ, то согласно определению имеем:
\vec{a}\cdot \vec{b}=ab\cos \phi .\; \; \; \left(1 \right)
vekt022

Рис.1

Из формулы (1) следует, что скалярное произведение векторов \vec{a} и \vec{b} можно выразить также формулами:

\vec{a}\cdot \vec{b}=a\Pi p_{\vec{a}}\vec{b},\; \vec{a}\cdot \vec{b}=b\Pi p_{\vec{b}}\vec{a},\; \; \; \left(2 \right)


т. е. скалярное произведение двух векторов равно длине одного из них, умноженной на проекцию другого вектора на направление первого.
Из формулы (1) следует также, что:
а) Если \vec{a} и \vec{b} ненулевые векторы, то cкалярное произведение равно нулю только в том случае, если \vec{a} и \vec{b} перпендикулярны.
б) Если φ — острый угол, то \vec{a}\vec{b}>0.
в) Если φ — тупой угол, то \vec{a}\vec{b}<0. г) Скалярное произведение обладает свойством коммутативности (переместительности): \vec{a}\vec{b}=\vec{b}\vec{a}. д) Скалярное произведение обладает свойством распределительности

\left(\vec{a}+\vec{b} \right)\cdot \vec{c}=\vec{a}\vec{c}+\vec{b}\vec{c}.

е) Скалярное произведение обладает свойством (асоциативности) сочетательности относительно числового множителя:

\left(\vec{a}\vec{b} \right) \lambda =\vec{a}\left(\vec{b} \lambda \right)

Скалярное произведение векторов, заданных своими проекциями.
Если векторы \vec{a} и \vec{b} заданы своими проекциями:

\vec{a}=x_{1}\vec{i}+y_{1}\vec{j}+z_{1}\vec{k},\; \vec{b}=x_{2}\vec{i}+y_{2}\vec{j}+z_{2}\vec{k},


то скалярное произведение этих векторов равно сумме произведений их одноименных проекций:

\vec{a}\vec{b}=x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}.


При \vec{b}=\vec{a} имеем

\vec{a^{2}}=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}.\; \; \; \left(3 \right)


С другой стороны

\vec{a^{2}}=aa\cos 0=a^{2}.


Тогда

a=\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}},\; \; \; \left(4 \right)


т. е. длина вектора равна корню квадратному из суммы квадратов его проекций.
Угол между двумя векторами. Из формулы (1) следует:

\cos \phi =\frac{\vec{a\vec{b}}}{ab},\; \; \; \left(5 \right)


или в координатной форме:

\cos \phi =\frac{x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}\cdot \sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}},\; \; \; \left(6 \right)


т. е. косинус угла между векторами равен их скалярному произведению, деленному на произведение их длин.
Направляющие косинусы вектора \vec{a} с осями координат выражаются так:

\cos \alpha =\frac{x_{1}}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}},\; \cos \beta =\frac{y_{1}}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}},\; \cos \gamma =\frac{z_{1}}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}}.\; \; \; \left(7 \right)



Проекции вектора

1. Проекции вектора. Проекцией вектора \vec{AB} на ось \vec{l} называется число, равное длине отрезка A_{1}B_{1} взятое со знаком плюс, если направление отрезка A_{1}B_{1} совпадает с направлением оси \vec{l}, и со знаком минус, если эти направления противоположны (рис.1).
vekt018

Рис. 1

Проекция вектора \vec{AB}=\vec{a} на ось \vec{l} обозначается формулой
\Pi p_{\vec{l}}\vec{AB} или \Pi p_{\vec{l}}\vec{a}.
Проекция вектора \vec{AB} на ось \vec{l} выражается формулой

\Pi p_{\vec{l}}\vec{AB}=AB\cos \phi

или \Pi p_{\vec{l}}\vec{a}=a\cos \phi,
где АВ = а — модуль вектора \vec{AB}=\vec{a}, φ — угол наклона вектора к оси \vec{l}.
Проекция суммы векторов на ось \vec{l} равна сумме их проекций на ту же ось:

\Pi p_{\vec{l}}(\vec{a}+\vec{b}+\vec{c})=\Pi p_{\vec{l}}\vec{a}+\Pi p_{\vec{l}}\vec{b}+\Pi p_{\vec{l}}\vec{c}.


При умножении вектора на скаляр его проекция умножается на этот скаляр:

\Pi p_{\vec{l}}n\vec{a}=n\Pi p_{\vec{l}}\vec{a}.


Рассмотрим прямоугольную систему координат и произвольный вектор \vec{OM} (рис.2).
Очевидно, будем иметь:

Сложение и вычитание векторов. Умножение вектора на число

1. Сложение векторов. Векторы складываются геометрически по правилу параллелограмма или многоугольника.
Правило параллелограмма. Суммой двух векторов \large \vec{a} и \large \vec{b} называют такой третий вектор \large \vec{c}, выходящий из их общего начала, который служит диагональю параллелограмма, сторонами которого являются сами векторы (рис.1) и обозначают так: \large \vec{a}+\vec{b}=\vec{c}.
vekt008

Рис.1

Правило многоугольника. Чтобы построить сумму любого конечного числа векторов, нужно в конце первого слагаемого вектора построить второй, в конце второго построить третий и т. д. Вектор, замыкающий полученную ломаную линию, представляет собой искомую сумму. Начало его совпадает с началом первого слагаемого вектора, а конец — с концом последнего.

загрузка...

Векторы и скаляры

Величины, с которыми приходится встречаться в физике, механике и других прикладных дисциплинах, бывают двоякого рода: скалярные и векторные.
Скалярными величинами, или скалярами, называются величины, которые определяются только числовым значением.
Например: время, масса, плотность, длина отрезка, площадь, объем и т. д
Векторными величинами, или векторами, называются величины, которые определяются не только численным значением, но направлением и точкой приложения.
Например: сила, скорость, ускорение и т. д.
Векторные величины геометрически изображаются в виде отрезков, снабженных стрелками. Стрелка указывает направление, а длина отрезка изображает численные значения вектора и называется длиною, или модулем, или абсолютной величиной вектора.

Примеры решения задач по теме "Метод координат в пространстве". Часть 2

Задача №1. Вычислить координаты точки М, если луч ОМ наклонен к оси Ох под углом в 60°, а к оси Оу — под углом в 45° и что длина его равна 12.
Решение. Согласно условию α =60°, β =45°.
Воспользовавшись соотношением между квадратами направляющих косинусов, найдем угол α:

 \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1.


 \frac{1}{4}+\frac{2}{4}+\cos ^{2}\gamma =1,\; \; \; \cos ^{2}\gamma =1-\frac{3}{4}=\frac{1}{4},


 \cos \gamma =\pm \frac{1}{2};


 \cos \gamma _{1}=\frac{1}{2},\; \; \gamma _{1}=60^{\circ};\; \; \; \cos \gamma _{2}=-\frac{1}{2},\; \; \gamma _{1}=120^{\circ}.


Координаты точки М определим по формулам:

Примеры решения задач по теме "Метод координат в пространстве". Часть 1

Задача №1. Построить точки А (-3; 5; 1), В (1; -2; 4), С (2; 6; -1), D (4; 0; 3), Е (0; 7; 0), F (0; 0; 0). Объяснить расположение точек.
Построение. На оси Ох в отрицательном направлении откладываем 3 единицы выбранного масштаба. Из конца третьего отрезка проводим полупрямую вправо параллельно оси Оу и откладываем на ней 5 единиц выбранного масштаба (рис.1).
koord016

Рис.1

Из конца пятого отрезка проведем полупрямую вверх параллельно оси Оz и на ней отложим отрезок, равный 1. Конец этого отрезка и дает искомую точку А.
Аналогично строим остальные точки.

загрузка...