Monthly Archives: Декабрь 2015

Примеры решения неравенств с модулем

Примеры решения неравенств с модулем
Пример 5. Решить неравенство \left | 2x-4 \right |<x -1.

Решение.
1 способ. Исходное неравенство можно заменить совокупностью двух систем:

\left\{\begin{matrix} 2x-4\geq 0,\\ 2x-4<x-1; \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4<0,\\ -(2x-4)<x-1. \end{matrix}\right.

Из первой системы получаем 2\leq x<3 из второй системы — \frac{5}{3}\leq x<2. Искомое решение будет объединением решений первой и второй систем, т. е.  x\in \left ( \frac{5}{3};2 \right ) \bigcup \left [ 2;3 \right )\Leftrightarrow x\in \left ( \frac{5}{3};3 \right ).

Неравенства с модулем

Неравенства с модулем
При решении неравенств, содержащих переменную под знаком модуля, используется определение модуля функции:

\left|f(x) \right|=\left\{\begin{matrix} f(x), f(x)\geq 0,\\ -f(x), f(x)<0. \end{matrix}\right.


Можно также пользоваться свойствами модуля, в частности такими как

\left|f(x) \right|\geq 0;\; \left | f(x)\cdot g(x) \right |=\left | f(x) \right |\cdot \left | g(x) \right |;\; \left | f(x) \right |^{2}=\left ( f(x) \right )^{2};\; \left | \frac{f(x)}{g(x)} \right |=\frac{\left | f(x) \right |}{\left | g(x) \right |};

Метод замены переменной при решении рациональных неравенств

Метод замены переменной при решении рациональных неравенств
Многие неравенства удобно решать, применяя метод замены переменной (метод подстановки).
Пример 1. Решить неравенство (x^{2}-x)^{2}-8(x^{2}-x)+12<0.
Решение. Сделав замену переменной t=x^{2}-x, получаем t^{2}-8t+12<0. Корни уравнения t^{2}-8t+12=0 есть t_{1}=2,\; t_{2}=6.
Отсюда  t^{2}-8t+12=(t-2)(t-6)<0 \Leftrightarrow 2<t<6. Поскольку t=x^{2}-x, то получаем

Обобщенный метод интервалов

Обобщенный метод интервалов
Пусть требуется решить неравенство

(x-\alpha _{1})^{k_{1}}(x-\alpha _{2})^{k_{2}}...(x-\alpha _{n-1})^{k_{n-1}}(x-\alpha _{n})^{k_{n}}>0,


где k_{1},k_{2},...,k_{n-1},k_{n} - целые положительные числа;
\alpha _{1},\alpha _{2},..., \alpha _{n-1},\alpha _{n} — действительные числа, среди которых
нет равных и такие, что \alpha _{1}< \alpha _{2}<...<\alpha _{n-1}<\alpha _{n}. Неравенства подобного типа решают с применением обобщенного метода интервалов. В основе этого метода лежит следующее свойство двучлена (x-\alpha )^{n}: точка x=\alpha делит числовую ось на две части причем если n=2k (n — четное), то выражение (x-\alpha )^{n} справа и слева от точки x=\alpha сохраняет положительный знак; если n=2k+1 (n — нечетное число), то выражение (x-\alpha )^{n} справа от точки x=\alpha положительно, а слева от точки x=\alpha отрицательно.

загрузка...

Примеры решения рациональных неравенств методом интервалов

Примеры решения рациональных неравенств методом интервалов
Пример 1. Решить неравенство (x-1)(x-3)>0.
Решение. Многочлен f(x)=(x-1)(x-3) обращается в нуль в точках x=1,\; x=3. Эти точки разбивают координатную прямую на промежутки (-\propto ;1),\; (1;3),\; (3;+\propto), внутри каждого из которых функция f(x) сохраняет знак. Так как в промежутке (3;+\propto), сомножители (x-1),(x-3) положительны, то и их произведение положительно, т. е. f(x)>0. Отметим промежуток (3;+\propto) знаком « + ». Далее знаки в промежутках чередуются. Проводим через отмеченные точки «кривую знаков»(рис. 1).

Решение рациональных неравенств методом интервалов

Решение рациональных неравенств методом интервалов
Неравенства вида P_{n}(x)>0 \left(P_{n}(x)<0,\: P_{n}(x)\geq 0,\: P_{n}(x)\leq 0 \right),
\frac{P_{n}(x)}{Q_{m}(x)}>0 \left(\frac{P_{n}(x)}{Q_{m}(x)}<0,\: \frac{P_{n}(x)}{Q_{m}(x)}\geq 0,\: \frac{P_{n}(x)}{Q_{m}(x)}\leq 0 \right), где
P_{n}(x),Q_{m}(x) — многочлены соответственно степеней n и m, т. е.
P_{n}(x)=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+...+a_{n-1}x+a_{n},
Q_{m}(x)=b_{0}x^{m}+b_{1}x^{m-1}+b_{2}x^{m-2}+...+b_{m-1}x+b_{m},
обычно решают методом интервалов (методом промежутков). Этот метод удобен, например, для решения неравенств следующего вида:

x(x+1)\geq 0,\; \frac{3x}{x-3}<0,\; (x-1)(x-3)(x+5)\leq 0,\; \frac{x^{2}+5x+6}{x^{2}-5x-6}\geq 0,\; \frac{(x-1)(x-3)(x-5)}{(x+1)(x+3)}<0

Графическое решение неравенств второй степени

Графическое решение неравенств второй степени
Как известно, графиком квадратичной функций y=ax^{2}+bx+c является парабола с ветвями, направленными вверх, если a>0, и вниз, если a<0 (иногда говорят, что парабола направлена выпуклостью вниз, если a>0 и выпуклостью вверх, если a<0). При этом возможны три случая: парабола пересекает ось Ox (т. е. уравнение ax^{2}+bx+c=0 имеет два различных корня), парабола имеет вершину на оси Ox (т. е. уравнение ax^{2}+bx+c=0 имеет один корень, так называемый двукратный корень), парабола не пересекает ось Ox (т. е. уравнение ax^{2}+bx+c=0 не имеет действительных корней). Таким образом, возможны шесть положений параболы, которые представлены на рис.1—2 (D=b^{2}-4ac — дискриминант квадратного трехчлена ax^{2}+bx+c).

×