Category Archives: ЕГЭ по математике

Решение реального ЕГЭ-2016 по математике (06.06.2016). Профильный уровень + условия тестов

Подробные решения контрольных измерительных материалов Единого государственного экзамена по МАТЕМАТИКЕ от 06.06.2016. Профильный уровень. Основная волна

Условия КИМов реального ЕГЭ 2016 по математике (тип 1)
Часть 1

1. В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика 1 сентября составляли 103 куб, м воды, а 1 октября — 114 куб. м.

Задачи на комбинации тел. Готовимся к ЕГЭ по математике. Геометрия. Урок 32

Задача 1. Цилиндр и конус имеют общее основание и общую высоту (см. рис. 1). Вычислите объём цилиндра, если объём конуса равен 16.
cilinder_016

Увеличение и уменьшение геометрических тел. Готовимся к ЕГЭ по математике. Геометрия. Урок 31

При увеличении всех линейных измерений тела в k раз площадь поверхности этого тела увеличивается в \displaystyle k^{2} раз, а объём этого тела — в \displaystyle k^{3} раз. Например, при увеличении радиуса шара в 5 раз площадь его поверхности увеличится в 25 раз, а объём — в 125 раз.
Объём параллелепипеда, призмы, цилиндра и конуса прямо пропорционален высоте и площади основания.

Шар. Готовимся к ЕГЭ по математике. Геометрия. Урок 30

Шар

cilinder_012

загрузка...

Конус. Готовимся к ЕГЭ по математике. Геометрия. Урок 29

Объём конуса (см. рис. 1) может быть вычислен по той же формуле, что и объём пирамиды:

\displaystyle V=\frac{1}{3}S_{OCH}h.


Если известен радиус основания r, то объём можно найти по формуле

\displaystyle V=\frac{1}{3}\pi r^{2}h.

Цилиндр. Готовимся к ЕГЭ по математике. Геометрия. Урок 28

Для объёма и площади боковой поверхности цилиндра (см. рис. 1) справедливы те же формулы, что и для призмы:
\displaystyle V=S_{OCH}h,\; S_{bok}=P_{OCH}h.
cilinder_002

Тетраэдр и пирамида. Готовимся к ЕГЭ по математике. Геометрия. Урок 27

Объём тетраэдра и пирамиды (см. рис. 1) можно найти по формуле
\displaystyle V=\frac{1}{3}S_{OCH}h.
tetr_002

загрузка...
!--noindex-->