Category Archives: ЕГЭ по математике

Описанные и вписанные окружности (задачи). Готовимся к ЕГЭ по математике. Геометрия. Урок 18

Задача 7. Периметр прямоугольной трапеции, описанной около окружности, равен 42, её большая боковая сторона равна 12 (см. рис. 8). Найдите радиус окружности.
vpys_okr_032

Описанные и вписанные окружности (задачи). Готовимся к ЕГЭ по математике. Геометрия. Урок 17

Задача 1. Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведённым в одну из вершин n-угольника (принадлежащих этой стороне), равен 67,5° (см. рис. 1). Найдите n.
vpys_okr_018

Описанные и вписанные окружности (теория). Готовимся к ЕГЭ по математике. Геометрия. Урок 16

Окружность называют вписанной в угол или многоугольник (в частности, в треугольник), если она касается всех сторон соответствующего угла или многоугольника (см. рис. 1).
vpys_okr_002

Углы, связанные с окружностью (задачи). Готовимся к ЕГЭ по математике. Геометрия. Урок 15

Задача 1. Найдите угол ACO, если прямая CA касается окружности в точке A, точка O — центр окружности, дуга AD окружности, заключённая внутри этого угла, равна 128° (см. рис. 1). Ответ дайте в градусах.
ugly_012

загрузка...

Углы, связанные с окружностью (теория). Готовимся к ЕГЭ по математике. Геометрия. Урок 14

Угол с вершиной в центре окружности называется центральным углом.
O — центр окружности, \displaystyle \angle AOB — центральный угол, опирающийся на дугу BA (см. рис. 1).
ugly_002

Подготовка к ЕГЭ по математике (видео). Уроки 64-65. Решение текстовых задач из открытого банка заданий ЕГЭ

Вашему вниманию предлагается уроки №№64-66 из видеокурса "Подготовка к ЕГЭ по математике. Базовый и продвинутый уровни". Содержание курса соответствует программам подготовительных курсов на базе высших учебных заведений.
Видеокурс поможет Вам не только подготовиться к успешной сдаче ЕГЭ, но и к продолжению обучения в ВУЗе.

Подготовка к ЕГЭ по математике (видео). Уроки 62-63. Решение рациональных уравнений из открытого банка заданий

Вашему вниманию предлагается уроки №№62-63 из видеокурса "Подготовка к ЕГЭ по математике. Базовый и продвинутый уровни". Содержание курса соответствует программам подготовительных курсов на базе высших учебных заведений.
Видеокурс поможет Вам не только подготовиться к успешной сдаче ЕГЭ, но и к продолжению обучения в ВУЗе.