Category Archives: Высшая математика

Непосредственное нахождение производной. Практикум по математическому анализу. Урок 25

Для непосредственного нахождения производной \displaystyle y' от функции \displaystyle y=f(x) служит следующее общее правило.
I. Придаем аргументу x произвольное приращение \displaystyle \Delta x и, подставляя в данное выражение функции вместо x наращенное значение \displaystyle x+\Delta x находим наращенное значение функции:

\displaystyle y+\Delta y=f(x+\Delta x)

.

Производная функции и её геометрическое значение. Практикум по математическому анализу. Урок 24

Производной функции \displaystyle y=f(x) называется предел отношения ее приращения \displaystyle \Delta y к соответствующему приращению \displaystyle \Delta x независимой переменной, когда \displaystyle \Delta x\rightarrow 0:

\displaystyle \underset{\Delta x \to 0}{lim}\frac{\Delta y}{\Delta x}=\underset{\Delta x \to 0}{lim}\frac{f(x+\Delta x)-f(x)}{\Delta x}. \; (*)

Непрерывность и точки разрыва функции. Примеры. Практикум по математическому анализу. Урок 23

Пример 1. Для каждой из следующих функций найти точки разрыва, если они существуют, найти скачок функции в каждой точке разрыва и построить график:
1) \displaystyle f(x)=\left\{\begin{matrix} -\frac{1}{2}x^{2},\: if\: x\leq 2,\\ x,\: if\: x>2; \end{matrix}\right.
2) \displaystyle \varphi (x)=\left\{\begin{matrix} 2\sqrt{x},\: if\: 0\leq x\leq 1,\\ 4-2x,\: if\: 1<x <2,5,\\ 2x-7,\: if\: 2,5\leq x<+\infty ; \end{matrix}\right.

Непрерывность и точки разрыва функции. Примеры. Практикум по математическому анализу. Урок 22

Пример 1. Показать, что элементарные функции:
1) \displaystyle y=2x^{2}-1; 2) \displaystyle v=\textrm{cosec}\: x.
непрерывны во всей своей области определения.
Решение. Найдем область определения функции и затем убедимся, исходя из определения непрерывности, что функция будет непрерывна в этой же области.

загрузка...

Непрерывность и точки разрыва функции. Практикум по математическому анализу. Урок 21

Функция \displaystyle y=f(x) называется непрерывной в точке \displaystyle x_{0}, если в этой точке бесконечно малому приращению аргумента \displaystyle x-x_{0}=\Delta x соответствует бесконечно малое приращение функции \displaystyle y-y_{0}=\Delta y, т. е. если
\displaystyle \underset{\Delta x \to 0 }{\textrm{lim}}\Delta y=\underset{\Delta x \to 0 }{\textrm{lim}}\left [ f(x_{0}+\Delta x)-f(x_{0}) \right ]=0.
Этому определению равносильно следующее:

Сравнение бесконечно малых. Практикум по математическому анализу. Урок 20

Чтобы сравнить между собой бесконечно малые величины \displaystyle \alpha и \displaystyle \beta, находят предел их отношения. При этом:
1) если \displaystyle \textrm{lim}\frac{\alpha }{\beta }=0, то \displaystyle \alpha называется бесконечно малой высшего порядка, чем \displaystyle \beta;
2) если \displaystyle \textrm{lim}\frac{\alpha }{\beta }=\infty, то \displaystyle \alpha называется бесконечно малой низшего порядка, чем \displaystyle \beta;

Вычисление пределов. Практикум по математическому анализу. Урок 19

Рассмотрим случай, когда при \displaystyle x \to a или \displaystyle x \to \infty функция f(x) представляет степень, основание которой стремится к единице, а показатель — к бесконечности (случай \displaystyle 1^{\infty }).
В этом случае для нахождения предела функции используется 2-й замечательный предел:
\displaystyle \underset{n \to \infty }{\textrm{lim}}\left ( 1+\frac{1}{n} \right )^{n}=\underset{\alpha \to 0 }{\textrm{lim}}(1+\alpha )^{\frac{1}{\alpha }}=e.

загрузка...
!--noindex-->