Архив категории: Справочник по теории вероятностей

Решение задач на сложение и умножение вероятностей. Часть 3

Задача №1. Имеются 14 таблиц, содержащих данные о влажности на различной глубине тяжелосуглинистой черноземной почвы. В шести из этих таблиц приведены данные, полученные методом горячей сушки образцов при 105° С, а в остальных - методом холодной сушки над P_{2}O_{5}. Какова вероятность того, что среди трех случайным образом отобранных таблиц хотя бы одна таблица содержит данные, полученные методом горячей сушки?

Решение задач на сложение и умножение вероятностей. Часть 2

Задача №1. Мастер обслуживает 5 станков. 20% рабочего времени он проводит у первого станка, 10% - у второго, 15% - у третьего, 25% - у четвертого, 30% - у пятого станка. Найти вероятность того, что в наудачу выбранный момент времени мастер находится:
а) у второго или четвертого станка;
б) у первого, или второго, или третьего станка;
в) не у пятого станка.

Решение задач на сложение и умножение вероятностей. Часть 1

Задача №1. В денежно-вещевой лотерее на каждые 1000 билетов приходится 5 денежных и 20 вещевых выигрышей. Какова вероятность выигрыша на один билет?
Решение. Рассмотрим события:
A_{1} - вещевой выигрыш по одному билету;
A_{2} - денежный выигрыш по одному билету;
A - любой выигрыш по одному билету.

Теоремы сложения и умножения вероятностей. Основные формулы

Теорема сложения вероятностей двух несовместных событий:

P(A+B)=P(A)+P(B).\; \; (1)

В этой формуле: P(A+B) - вероятность суммы двух несовместных событий А и В, т.е. вероятность наступления одного из этих двух событий; Р(А) - вероятность наступления
события А; Р(В) - вероятность наступления события В; Р(А) + Р(В) - сумма вероятностей событий А и В.

загрузка...

Геометрические вероятности. Решение типовых задач #2

Геометрические вероятности. Решение типовых задач. Часть 2
Задача №1. Задача о встрече. Два товарища условились встретиться в определенном месте между 12 часами и половиной первого дня. Пришедший первым ждет другого в течение 20 минут, после чего уходит. Найти вероятность того, что встреча товарищей состоится, если каждый из них наудачу выбирает момент своего прихода (в промежутке от 12 часов до половины первого) и моменты прихода обоих независимы.
Решение. Обозначим событие: А - встреча товарищей состоится.
Найдем вероятность события А, применив формулу (1). Обозначим момент прихода одного из них через х мин., а момент прихода другого через у, мин. Для того, чтобы встреча произошла, необходимо и достаточно, чтобы выполнялось условие: \left|x-y \right|\leq 20.
Будем изображать х и у как декартовы координаты точек плоскости; в качестве единицы масштаба выберем минуту (рис.1).

Геометрические вероятности. Решение типовых задач #1

Геометрические вероятности. Решение типовых задач. Часть 1
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Предполагается, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его разложения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством

Относительная частота и статистическая вероятность. Основные формулы и типовые задачи

Относительная частота и статистическая вероятность. Основные формулы и решения типовых задач
Относительная частота (частость) события А определяется равенством

W(A)=\frac{m}{n},\; \; \; \; (5)


где n - общее число проведенных испытаний; m - число испытаний, в которых событие А наступило (иначе - частота события А).
При статистическом определении за вероятность события принимают его относительную частоту, найденную по результатам большого числа испытаний.

×