Category Archives: Справочник по теории вероятностей

Решение задач на классическое определение вероятности. Часть 5

Задача №1. В зрительном зале забронировано 10 мест для приглашенных гос­тей. Пришли 7 приглашенных. Найти вероятность того, что четверо из пришедших гостей займут определенные для каждого из них места, если гости занимают места случайным образом.
Решение. Обозначим событие: А - А пришедших гостя займут определенные для каждого из них места.

Решение задач на классическое определение вероятности. Часть 4

Задача №1. Лифт в пятиэтажном доме отправляется вверх с первого этажа с тремя пассажирами. Найти вероятность того, что на каяодом этаже выйдет не более одного пассажира, предполагая, что все возможные способы рас­пределения пассажиров по этажам равновероятны.

Решение задач на классическое определение вероятности. Часть 3

Задача №1. Подготовлены для посадки на садовом участке и случайно смеша­ны саженцы двух сортов черной смородины: 6 саженцев сорта Селеченская и 8 - сорта Вологда. Какова вероятность того, что первыми будут посаже­ны 3 саженца смородины сорта Селеченская?
Решение. Обозначим событие: А - первыми будут посажены 3 саженца смородины сорта Селеченская.

Решение задач на классическое определение вероятности. Часть 2

Задача №1. Имеется 8 карточек; одна сторона каждой из них чистая, а на другой написаны буквы: И, Я, Л, 3, Г, О, О, О. Карточки кладут на стол чистой стороной вверх, перемешивают, а затем последовательно одну за другой переворачивают. Какова вероятность того, что при последовательном появлении букв будет составлено слово ЗООЛОГИЯ?
Решение. Обозначим событие: В - будет составлено слово ЗООЛОГИЯ.

загрузка...

Решение задач на классическое определение вероятности. Часть 1

Задача № 1. В программе дня компьютера, написанной в Турбо Паскале, использована функция Random(x), генерирующая целые случайные числа от 1 до x. Какова вероятность того, что при выполнении этой функции появится число, делящееся на 5, если x = 100?
Решение. Обозначим событие: А - при значении х = 100 появится число, делящееся на 5. Найдем вероятность события А, применив классическое определение вероятности.

Классическое определение вероятности. Формулы теории соединений

Классическое определение вероятности

Вероятность события А равна

P(A)=\frac{m}{n}.\; \; \; \; (1)


В этой формуле m — число исходов испытания, благоприятствующих событию А; n - число всех равновозможных несовместных исходов испытания, образующих полную группу.
При вычислении вероятностей пользуются формулами теории соединений. Основными из них являются формулы для определения: P_{k} - числа перестановок из k элементов, A_{k}^{s} - числа размещений из k элементов по s и C_{k}^{s} - числа сочетаний из k элементов по s. Число перестановок из k элементов равно

Вероятность суммы событий. Решение типовых задач

Вероятность суммы событий. Решение типовых задач

Событие А + В называют суммой событий А и В, если А+В происходит, когда происходит хотя бы одно из событий: А или В. Вероятность суммы А+В равна сумме вероятностей А и В,

P(A+B)=P(A)+P(B),\; \; \; (1)


если события А и B несовместны, т. е. А и В не могут произойти одновременно, в общем случае

P(A+B)=P(A)+P(B)-P(AB).\; \; \; (2)


Здесь произведение событий АВ — это событие, состоящее в том, что происходит и событие А, и событие B. Если А и В несовместны, то АВ — невозможное событие. Тогда Р(AB) = 0 и из (2) следует (1).
Если использовать задание случайных событий посредством перечисления благоприятствующих элементарных событий, то суммой событий А+В нужно назвать событие, состоящее из элементарных событий, каждое из которых входит хотя бы в одно из событий А или В; произведение АВ состоит из элементарных событий, входящих и в A, и в B.

загрузка...
!--noindex-->