Сложение и вычитание рациональных дробей. Умножение и деление рациональных дробей. Возведение рациональных дробей в степень

Сложение и вычитание рациональных дробей

Сумма (разность) двух рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме (разности) числителей исходных дробей:
image360
Пример 1.
image362
Пример 2.
image364
x≠y.
При сложении (или вычитании) рациональных дробей с разными знаменателями нужно привести дроби к общему знаменателю и выполнить сложение (или вычитание) дробей с общим знаменателем:


image366
где m — дополнительный множитель для первой дроби, n — дополнительный множитель для
второй дроби, S — общий знаменатель.
Замечание. Приведенные правила справедливы для любого конечного числа дробей.
Пример 3.
image372
Пример 4. Упростить выражение
image374
Решение.
image376
Ответ:
image378

Умножение и деление рациональных дробей

Произведение двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей перемножаемых дробей:
image380
Это правило распространяется на произведение любого конечного числа дробей.
Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель — произведению знаменателя первой дроби на числитель второй дроби:

image382
Если дробь умножается или делится не на дробь, а на многочлен R(x), то указанные выше правила остаются в силе, но многочлен R(x) необходимо представить в виде
image384
На практике при умножении или делении рациональных дробей обычно предварительно разлагают на множители числители и знаменатели исходных дробей (если это возможно).
Пример 1. Упростить выражение
image386
Решение.
image388
image390
image392
Ответ:
image394
Пример 2. Упростить выражение
image396
Решение.
image398
Ответ:
image400

Возведение рациональных дробей в степень

Степень рациональной дроби тождественно равна дроби, у которой числитель есть степень числителя, а знаменатель — степень знаменателя:
image410
Например:
image412
image402

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

загрузка...

Наш сайт находят по фразам:

×