Трапеция. Готовимся к ОГЭ по математике. Модуль 2. Урок 51

Трапецией называется четырёхугольник, у которого две стороны параллельны (основания трапеции), а две другие не параллельны. Пример трапеции — на рисунке 1, где BC и AD — основания, а AB и CD — боковые стороны.
Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон (MK в трапеции ABCD на рисунке 1).

Параллелограмм. Готовимся к ОГЭ по математике. Модуль 2. Урок 50

Параллелограмм — это четырёхугольник, у которого противоположные стороны попарно параллельны. На рисунке 1 ABCD — параллелограмм, так как \displaystyle AB\parallel CD и \displaystyle BC\parallel AD.
mnogougol_002

Площадь треугольника. Готовимся к ОГЭ по математике. Модуль 2. Урок 49

Площадь треугольника равна половине произведения любой его стороны на высоту, проведённую к этой стороне: \displaystyle S_{ABC}=\frac{1}{2}\cdot AC\cdot BH (см. рис. 1).
ugly_074

Равнобедренный треугольник. Готовимся к ОГЭ по математике. Модуль 2. Урок 48

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна стороне треугольника и равна её половине. \displaystyle MN\parallel AC,MN=\frac{1}{2}AC (см. рис.1).
ugly_062

загрузка...

Прямоугольный треугольник. Готовимся к ОГЭ по математике. Модуль 2. Урок 47

Часто углы измеряют не в градусах, а в радианах.
\displaystyle 1^{\circ}=\frac{\pi }{180} (радиан), впрочем, единицу измерения часто опускают.
\displaystyle 30^{\circ}=30\cdot \frac{\pi }{180}=\frac{\pi }{6};\; 60^{\circ}=\frac{\pi }{3};\; 90^{\circ}=\frac{\pi }{2};\; 180^{\circ}=\pi (радиан) и т. д.

Равенство и подобие треугольников. Готовимся к ОГЭ по математике. Модуль 2. Урок 46

Сумма углов треугольника равна 180°.
Сумма двух сторон треугольника больше третьей.
Против большей стороны треугольника лежит больший угол.

Против большего угла треугольника лежит его большая сторона.
Треугольник, у которого один угол тупой, называется тупоугольным.

Треугольник. Готовимся к ОГЭ по математике. Модуль 2. Урок 45

Рассмотрим три точки, не лежащие на одной прямой. Это - вершины треугольника. Соединим их отрезками — это будут стороны треугольника.
Треугольником называется многоугольник с тремя углами. Например, на рисунке 1 изображён \displaystyle \bigtriangleup ABC (так обозначается треугольник с заданными вершинами).

загрузка...