Решение типовых задач на геометрическую прогрессию. Часть 2

Пример 1. В геометрической прогрессии (b_{n}): b_{1}=6,q=3. Найти b_{64},S_{64}
Решение.
b_{64}=b_{1}\cdot q^{63}=6\cdot 3^{63};
S_{64}=\frac{b_{1}(1-q^{64})}{1-q}=\frac{6(1-3^{64})}{1-3}=
=\frac{6}{-2}\left ( 1-3^{64} \right )=-3\cdot (1-3^{64})=3\cdot (3^{64}-1).
Ответ: b_{64}=6\cdot 3^{63};\; S_{64}=3\cdot (3^{64}-1).

Решение типовых задач на геометрическую прогрессию. Часть 1

Пример 1. В геометрической прогрессии (b_{n}) b_{1}=16;\; q=\frac{1}{2}. Найти b_{7}.
Решение.
b_{7}=b_{1}q^{6}=16\cdot \left ( \frac{1}{2} \right )^{6}=\frac{2^{4}}{2^{6}}=\frac{1}{2^{2}}=\frac{1}{4}.
Ответ: \frac{1}{4}.
Пример 2. Дана геометрическая прогрессия (b_{n}): 2;-6;18. Найти b_{5}.
Решение.
Найдем сначала знаменатель прогрессии:

Геометрическая прогрессия (основные формулы)

Геометрической прогрессией называется такая числовая последовательность (b_{n}), каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же постоянное для данной последовательности число, отличное от нуля. Первый член геометрической прогрессии предполагается отличным от нуля. b_{n} называется n - ым членом геометрической прогрессии.
Примеры геометрической прогрессии:
а) 1;2;4;8;16;32;...;
б) 1;\frac{1}{4};\frac{1}{16};\frac{1}{256};...;
в) 12;4;\frac{4}{3};\frac{4}{9};\frac{4}{27};....

Решебник к сборнику контрольных работ по алгебре для 11 класса (авт. Глизбург В. И.). Профильный уровень ОНЛАЙН

Решения контрольных работ по алгебре и началам анализа из сборника для 11 класса Глизбург В. И. (под ред. А.Г. Мордковича). Профильный уровень. Варианты 1,2,3,4. - Рукопись. - 2016.
Настоящее пособие содержит решения контрольных работ из сборника "Глизбург В. И. Алгебра и начала анализа. Контрольные работы для 11 класса общеобразовательных учреждений (профильный уровень) / В. И. Глизбург ; под ред. А. Г. Мордковича. — М. : Мнемозина, 2008. — 55 с."
Сборник контрольных работ предназначен для тех учителей математики, которые используют в своей преподавательской деятельности УМК, созданный авторским коллективом под руководством А. Г. Мордковича для изучения в 11-м классе профильной старшей школы курса алгебры и начал анализа.

загрузка...

Решение типовых задач на арифметическую прогрессию. Часть 2

Пример 1. Найти арифметическую прогрессию, если сумма её n первых членов S_{n}=2n^{2}-3n.
Решение.
S_{1}=a_{1}=2\cdot 1^{2}-3\cdot 1=2-3=-1;
S_{2}=2\cdot 2^{2}-3\cdot 2=8-6=2;
S_{2}=a_{1}+a_{2}=2\Leftrightarrow a_{2}=2-a_{1}=2-(-1)=3.
Отсюда d=a_{2}-a_{1}=3-(-1)=4.
Ответ: a_{1}=-1;\: d=4.

Решение типовых задач на арифметическую прогрессию. Часть 1

Пример 1. Выписать первые пять членов арифметической прогрессии (a_{n}), если: a_{1}=12,\; d=3.
Решение.
a_{2}=a_{1}+d=12+3=15;\; a_{3}=a_{2}+d=15+3=18;
a_{4}=a_{3}+d=18+3=21;\; a_{5}=a_{4}+d=21+3=24.
Ответ: 12; 15; 18; 21; 24.
Пример 2. Найти одиннадцатый член арифметической прогрессии (a_{n}), если a_{1}=-3,\; d=0,7.
Решение.

Арифметическая прогрессия (основные формулы)

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же постоянным для данной последовательности числом. Обозначается арифметическая прогрессия обычно так: (a_{n}). a_{n} называется n-м членом арифметической прогрессии.
Из определения арифметической прогрессии следует, что a_{n+1}=a_{n}+d. Число d называется разностью прогрессии. Таким образом,
d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=...=a_{n+1}-a_{n}=...

загрузка...