Решение иррациональных неравенств

Рассмотрим более сложные иррациональные неравенства.
Иррациональное неравенство \sqrt{f(x)}<g (x) равносильно системе неравенств, т. е.\sqrt{f(x)}<g(x)\Leftrightarrow \left\{\begin{matrix} f(x)\geq 0,\\ g(x)>0,\\ \left ( \sqrt{f(x)} \right )^{2}< \left ( g(x) \right )^{2} \end{matrix}\right. Иррациональное неравенство \sqrt{f(x)}>g(x) равносильно совокупности двух систем неравенств,
т. е. \sqrt{f(x)}>g(x)\Leftrightarrow \left [ \begin{matrix} \left\{\begin{matrix} f(x)\geq 0,\\ g(x)\geq 0,\\ \left ( \sqrt{f(x)} \right )^{2}>\left ( g(x) \right )^{2}; \end{matrix}\right.\\ \left\{\begin{matrix} f(x)\geq 0,\\ g(x)<0. \end{matrix}\right. \end{matrix} \right.

Подробное решение демоварианта ЕГЭ по математике за 2014 год ОНЛАЙН

Единый государственный экзамен по МАТЕМАТИКЕ. Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2014 года по математике. Подготовлен Федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ».
Демонстрационный вариант единого государственного экзамена по математике 2014 года разработан по заданию Федеральной службы по надзору в сфере образования и науки Российской Федерации.
Демонстрационный вариант предназначен для того, чтобы дать представление о структуре будущих контрольных измерительных материалов, количестве заданий, их форме, уровне сложности.

Иррациональные неравенства

Иррациональные неравенства
При решении иррациональных неравенств используются те же приемы, что и при решении иррациональных уравнений: возведение обеих частей неравенства в одну и ту же натуральную степень, уединение радикала, введение новых переменных и т. д. При решении можно придерживаться, например, такого плана:
а) найти область определения исходного неравенства;
б) решить исходное неравенство, руководствуясь утверждениями о равносильности неравенств;

Решение неравенств с модулем методом интервалов

Пример 7. Решить неравенство \left | x+2 \right |+\left | x-2 \right |<6.
Решение. При решении исходного неравенства используем метод интервалов для модулей. Отметим на числовой прямой точки, в которых выражения, находящиеся под знаками модулей, обращаются в нуль. Это точки x=-2, x=2. Вся числовая прямая разбивается этими точками на три интервала (три промежутка): \left ( -\infty ;-2 \right ) (1 интервал), \left [ -2;2 \right ] (2 интервал), \left ( 2;+\infty \right ) (3 интервал). Приведем две формы записи решения исходного неравенства.
1 форма записи решения.

загрузка...

Примеры решения неравенств с модулем

Примеры решения неравенств с модулем
Пример 5. Решить неравенство \left | 2x-4 \right |<x -1.

Решение.
1 способ. Исходное неравенство можно заменить совокупностью двух систем:

\left\{\begin{matrix} 2x-4\geq 0,\\ 2x-4<x-1; \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4<0,\\ -(2x-4)<x-1. \end{matrix}\right.

Из первой системы получаем 2\leq x<3 из второй системы — \frac{5}{3}\leq x<2. Искомое решение будет объединением решений первой и второй систем, т. е.  x\in \left ( \frac{5}{3};2 \right ) \bigcup \left [ 2;3 \right )\Leftrightarrow x\in \left ( \frac{5}{3};3 \right ).

Неравенства с модулем

Неравенства с модулем
При решении неравенств, содержащих переменную под знаком модуля, используется определение модуля функции:

\left|f(x) \right|=\left\{\begin{matrix} f(x), f(x)\geq 0,\\ -f(x), f(x)<0. \end{matrix}\right.


Можно также пользоваться свойствами модуля, в частности такими как

\left|f(x) \right|\geq 0;\; \left | f(x)\cdot g(x) \right |=\left | f(x) \right |\cdot \left | g(x) \right |;\; \left | f(x) \right |^{2}=\left ( f(x) \right )^{2};\; \left | \frac{f(x)}{g(x)} \right |=\frac{\left | f(x) \right |}{\left | g(x) \right |};

Метод замены переменной при решении рациональных неравенств

Метод замены переменной при решении рациональных неравенств
Многие неравенства удобно решать, применяя метод замены переменной (метод подстановки).
Пример 1. Решить неравенство (x^{2}-x)^{2}-8(x^{2}-x)+12<0.
Решение. Сделав замену переменной t=x^{2}-x, получаем t^{2}-8t+12<0. Корни уравнения t^{2}-8t+12=0 есть t_{1}=2,\; t_{2}=6.
Отсюда  t^{2}-8t+12=(t-2)(t-6)<0 \Leftrightarrow 2<t<6. Поскольку t=x^{2}-x, то получаем

загрузка...