Решение типовых задач по теме "Плоскость". Часть 3

Решение типовых задач по теме "Задание плоскости в пространстве". Часть 3
Задача №1. Даны две параллельные плоскости 3x + 4y-2z-1=0 и 6x+8y-4z-3=0.
Найти среднюю плоскость (т.е. параллельную данным плоскостям и расположенную между ними на равных расстояниях от них).
Решение. Пусть точка M(x;y;z) принадлежит искомой плоскости. Определим ее отклонение от каждой из данных плоскостей по формуле:

\delta =\frac{Ax_{1}+By_{1}+Cz_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}.


\delta_{1} =\frac{3x+4y-2z-1}{\sqrt{9+16+4}}=\frac{3x+4y-2z-1}{\sqrt{29}}.


\delta_{2} =\frac{6x+8y-4z-3}{\sqrt{36+64+16}}=\frac{6x+8y-4z-3}{\sqrt{116}}=\frac{6x+8y-4z-3}{2\sqrt{29}}.


Так как точка М лежит между данными плоскостями, а плоскости расположены по одну сторону от начала координат.
D_{1}=-1<0,\; D_{2}=-3<0, то отклонения \delta _{1} и \delta _{2} будут противоположных знаков:

\delta _{1}=-\delta _{2},\; \frac{3x+4y-2z-1}{\sqrt{29}}=-\frac{6x+8y-4z-3}{2\sqrt{29}};


6x+8y-4z-2=-6x-8y+4z+3,\; 12x+16y-8z-5=0 — искомое уравнение.
Ответ: 12x+16y-8z-5=0.
Задача №2. Найти плоскость, параллельную двум данным параллельным плоскостям
2х+3y-z-1=0 и 4x+6y-2z+3=0 и делящую расстояние между ними в отношении 2:3.

Решение типовых задач по теме "Плоскость". Часть 2

Решение типовых задач по теме "Задание плоскости в пространстве". Часть 2
Задача №1. Определить направляющие косинусы вектора, направленного из начала координат перпендикулярно к плоскости x-2y+2z-9=0.
Решение. Приводим уравнение плоскости к нормальному виду. Нормирующий множитель:

M=\frac{1}{\sqrt{1^{2}+(-2)^{2}+2^{2}}}=\frac{1}{\sqrt{9}}=\frac{1}{3}.


Умножая данное уравнение на M=\frac{1}{3}, получим нормальное уравнение плоскости:

\frac{1}{3}x-\frac{2}{3}y+\frac{2}{3}z-3=0.


Здесь \cos \alpha =\frac{1}{3},\; \cos \beta =-\frac{2}{3},\; \cos \gamma =\frac{2}{3}
суть направляющие косинусы нормального вектора

\vec{n}\left\{A;B;C \right\}=\vec{n}\left\{1;-2;2 \right\}


данной плоскости.
Ответ: \vec{n}\left\{1;-2;2 \right\}.
Задача №2. Найти расстояние плоскости \left(6\vec{i}-7\vec{j}-6\vec{k} \right)\vec{r}-33=0 от начала координат и углы, которые образует с осями координат перпендикуляр, опущенный из начала координат на плоскость.
Решения задач №1 и №2 подробно изложены в следующем видео

Задача №3. Уравнение плоскости 11х-7у-9z+15=0 написать в векторной форме в общем и в нормальном видах.
Задача №4. Составить уравнение плоскости, перпендикулярной к вектору \vec{n}\left\{3;4;12 \right\} и отстоящей от начала координат на расстояние р=3.
Решение. Уравнение плоскости, параллельной искомой и проходящей через начало координат, имеет вид: Зх+4у+12z=0.
Отклонение любой точки М(х;у;z) искомой плоскости Зх+4у+12z=0 равно ±3.
Тогда, воспользовавшись формулой

\delta =\frac{Ax_{1}+By_{1}+Cz_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}},


будем иметь:

\pm 3 =\frac{3x+4y+12z}{\sqrt{3^{2}+4^{2}+12^{2}}},\; \pm 3 =\frac{3x+4y+12z}{13}.


Откуда Зх+4у+12z±39=0 — искомые уравнения плоскости.
Ответ: Зх+4у+12z±39=0.
Решения задач №3 и №4 подробно изложены в следующем видео

Задача №5. Через точки М(3;-2;1) и N(0;3;5) провести плоскость, которая отсекала бы на осях Ох и Оу равные положительные отрезки.
Задача №6. Найти направляющие косинусы прямой, перпендикулярной к плоскости, которая отсекает на осях координат отрезки а=-18, b=-9, с=9.
Решение. Воспользовавшись уравнением плоскости в отрезках \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1,
составим уравнение плоскости: \frac{x}{-18}+\frac{y}{-9}+\frac{z}{9}=1,
или

x+2y-2z+18=0. (1)

Приведем общее уравнение плоскости к нормальному виду: нормирующий множитель

M=\frac{1}{\pm \sqrt{A^{2}+B^{2}+C^{2}}}


берем со знаком минус, так как в уравнении плоскости D= 18>0:

M=\frac{1}{- \sqrt{1+4+4}}=-\frac{1}{3}.


Теперь умножим уравнение (1) на -\frac{1}{3}. Получим:

-\frac{1}{3}x-\frac{2}{3}y+\frac{2}{3}z-6=0.


Направляющие косинусы перпендикуляра к плоскости имеют следующие значения:

\cos \alpha =-\frac{1}{3},\; \cos \beta =-\frac{2}{3},\; \cos \gamma =\frac{2}{3}.


Ответ: \cos \alpha =-\frac{1}{3},\; \cos \beta =-\frac{2}{3},\; \cos \gamma =\frac{2}{3}.
Решения задач №6 и №7 подробно изложены в следующем видео

Решение типовых задач по теме "Плоскость". Уравнение плоскости. Часть 1

Решение типовых задач по теме "Плоскость". Составить уравнение плоскости
Задача №1. Даны точки M_{1}(3;0;4) и M_{2}(5;6;9). Написать уравнение плоскости, проходящей через точку M_{1} и перпендикулярно к вектору M_{1}M_{2}.
Решение. Уравнение связки плоскостей, проходящей через точку M_{1}, будет

A(x-3)+B(y-0)+C(z-4)=0.


Нормальный вектор

\vec{M_{1}M_{2}}=(5-3)\vec{i}+(6-0)\vec{j}+(9-4)\vec{k}=2\vec{i}+6\vec{j}+5\vec{k}.


Подставляем проекции 2, 6 и 5 вектора \vec{M_{1}M_{2}} на место A, В и С в уравнение связки, будем иметь:

2(x-3)+6(y-0)+5(z-4)=0


или

2x+6y+5z-26=0.


Это и есть уравнение искомой плоскости (рис.1).
plisk12

Рис.1

Ответ: 2x+6y+5z-26=0.
Задача №2. Написать уравнение плоскости, проходящей через точки M_{1}(3;0;4), M_{2}(5;2;6) и M_{3}(2;3;-3).
Решения задач №1 и №2 подробно изложены в следующем видео

Решение типовых задач по теме "Плоскость". Построение плоскости

Решение типовых задач по теме "Плоскость". Часть 1
Задача №1. Построить плоскости, заданные уравнениями:
а) 5x+2y+3z-15=0, б)3x+2y+3z-6=0, в)3z-5=0,
г) x-4y+2z=0, д)3x-z=0.
Построение. а) Чтобы построить плоскость, не проходящую через начало координат, необходимо найти отрезки, отсекаемые плоскостью на осях координат. От­резок, отсекаемый плоскостью на оси Ох, мы найдем, если в уравнении плоскости положим у=0 и z=0; тогда 5х—15=0, а=х=3; аналогично, если x=0 и z=0, то b=y=7\frac{1}{2}; если х = 0; y=0, то c=z=5.

загрузка...

Плоскость в пространстве. Основные формулы

Основные понятия и формулы по теме "Плоскость".
Всякое уравнение первой степени между тремя переменными определяет плоскость. Обратно, всякая плоскость определяется уравнением первой степени относительно текущих координат.
1. Общее уравнение плоскости имеет вид:
Ах + By +Cz + D = 0. (1)
Особые случаи уравнения (1).
а) Пусть в уравнении (1) свободный член D=О, тогда получим уравнение
Ах + By + Сz = 0 (2)
плоскости, проходящей через начало координат.
б) Пусть в уравнении (1) один из коэффициентов А, В и С равен 0.
Тогда получим уравнения плоскостей, параллельных соответствующим координатным осям:

Смешанное и двойное векторное произведение векторов. Решение типовых задач

Решения типовых задач по теме: "Смешанное и двойное векторное произведение векторов"
Задача № 1. Вычислить объем параллелепипеда, построенного на векторах
\vec{M}=\vec{a}+\vec{b}+\vec{c},\; \vec{N}=\vec{a}-\vec{b}+\vec{c},\; \vec{P}=\vec{a}-\vec{b}-\vec{c}.
Решение. Так как векторное скалярное произведение трех векторов численно равно объему параллелепипеда, построенного на данных векторах, как на ребрах, то для решения данной задачи необходимо найти векторно-скалярное произведение векторов \vec{M}, \vec{N} и \vec{P}. При этом будем пользоваться следующим правилом.
Круговая перестановка трех сомножителей векторно-скалярного произведения не меняет его величины. Перестановка двух соседних множителей меняет знак произведения.
Примем еще во внимание, что векторно-скалярное произведение равно 0, если векторы компланарны.
V=\left(\vec{M}\vec{N}\vec{P} \right)=...=4\left(\vec{a}\vec{b}\vec{c} \right).
Все выкладки изложены в следующем видео:

Векторное произведение векторов. Примеры решения задач

Решения типовых задач по теме: "Векторное произведение векторов"
Задача № 1. Даны модули векторов \vec{a} и \vec{b}, \left|\vec{a} \right|=8,\; \left|\vec{b} \right|=15, и их скалярное произведение \vec{a}\vec{b}=96. Вычислить модуль векторного произведения \left|[\vec{a}\vec{b}] \right|.
Решение. Так как модуль векторного произведения двух векторов равен произведению модулей данных векторов, умноженному на синус угла между векторами, то необходимо знать синус угла между векторами \vec{a} и \vec{b}.
Воспользуемся скалярным произведением данных векторов:

\vec{a}\vec{b}=\left|\vec{a} \right|\left|\vec{b} \right|\cos \hat{(\vec{a}\vec{b})},


откуда

\cos \hat{(\vec{a}\vec{b})}=\frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}=\frac{96}{8\cdot 15}=\frac{4}{5}.


Тогда

\sin \hat{(\vec{a}\vec{b})}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}.


Следовательно,

\left|[\vec{a}\vec{b}] \right|=\left|\vec{a} \right|\left|\vec{b} \right|\sin \hat{(\vec{a}\vec{b})}=8\cdot 15\cdot \frac{3}{5}=72.


Ответ: \left|[\vec{a}\vec{b}] \right|=72.
Задача № 2. Какому условию должны удовлетворять векторы \vec{a} и \vec{b}, чтобы векторы 3\vec{a}+\vec{b} и \vec{a}-3\vec{b} были коллинеарны?
Решения этих задач подробно изложено в следующем видео

загрузка...
!--noindex-->