Возрастание и убывание функции. Практикум по математическому анализу. Урок 51

При изучении поведения функции в зависимости от изменения независимой переменной обычно предполагается, что во всей области определения функции независимая переменная изменяется монотонно возрастая, т. е. что каждое следующее ее значение больше предыдущего.
Если при этом последовательные значения функции также возрастают, то и функция называется возрастающей, а если они убывают, то и функция называется убывающей.
Некоторые функции во всей своей области определения изменяются монотонно — только возрастают или только убывают (например 2^{x},\: \textrm{arcctg}\, x).

Правило Лопиталя и его применение (окончание). Практикум по математическому анализу. Урок 50

Рассмотрим еще несколько случаев нахождения предела:
5) 1^{\infty } — когда функция представляет степень, основание которой стремится к единице, а показатель — к бесконечности;
6) \infty ^{0} — когда функция представляет степень, основание которой стремится к бесконечности, а показатель — к нулю;
7) 0 ^{0} — когда функция представляет степень, основание и показатель которой стремятся к нулю.
Эти случаи нахождения предела функции также сводятся к случаям \displaystyle \frac{0}{0} или \displaystyle \frac{\infty }{\infty } следующим путем: функция логарифмируется и сначала находится предел ее логарифма, а затем по найденному пределу логарифма находится и предел самой функции.

Правило Лопиталя и его применение (продолжение). Практикум по математическому анализу. Урок 49

Рассмотрим еще несколько случаев нахождения предела:
3) 0\cdot \infty — когда функция представляет произведение бесконечно малой величины на бесконечно большую;
4) \infty -\infty — когда функция представляет разность двух положительных бесконечно больших величин.
Эти случаи нахождения предела функции сводятся к случаям \displaystyle \frac{0}{0} или \displaystyle \frac{\infty }{\infty } путем преобразования функции к виду дроби.

Правило Лопиталя и его применение. Практикум по математическому анализу. Урок 48

В задачах на вычисление пределов функций (уроки №14-19) были разъяснены элементарные способы нахождения предела функции в тех случаях, когда аргумент неограниченно возрастает или стремится к значению, которое не входит в область определения функции. Кроме этих элементарных способов, весьма эффективным средством для нахождения предела функции в указанных особых случаях является следующее правило Лопиталя: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных (если последний предел существует или равен бесконечности).

загрузка...

Решение задач на формулу Тейлора. Практикум по математическому анализу. Урок 47

Задача 3. Вычислить с точностью до 10^{-6} приближенное значение:
1) \cos 5^{\circ}; 2) \sin 49^{\circ}; 3) \sqrt[4]{83}; 4) \sqrt[3]{121}.
Решение. 1) Воспользуемся приближенной формулой для \cos x, полученной в решении задачи 1.
Подставляя в эту формулу радианную меру угла 5^{\circ}, получим
\displaystyle \cos 5^{\circ}=\cos \frac{\pi }{36}\approx 1-\frac{\pi ^{2}}{2! 36^{2}}+\frac{\pi ^{4}}{4! 36^{4}}-...\pm \frac{\pi ^{2n}}{(2n)! 36^{2n}}.

Решение задач на формулу Тейлора. Практикум по математическому анализу. Урок 46

Задача 2. Аппроксимировать функции: 1) x^{m} и 2) \ln x многочленами n- й степени относительно двучлена x-1 и оценить погрешность. Затем, полагая x-1=t, получить разложения функций по степеням t.
Решение. Чтобы аппроксимировать данную функцию f(x) многочленом относительно двучлена x-1, следует написать для нее многочлен Тейлора, полагая a=1. Погрешность, возникающая при замене данной функции ее многочленом Тейлора, определяется величиной остаточного члена R_{n} формулы Тейлора.

Решение задач на формулу Тейлора. Практикум по математическому анализу. Урок 45

Задача 1. Каждую из данных функций аппроксимировать многочленом n-й степени относительно x, оценить погрешность и установить, при каких значениях x она может быть сделана сколь угодно малой.
1) e^{x}; 2) \sin x, 3) \cos x.
Решение. Чтобы получить приближенное выражение данной функции f(x) в виде многочлена относительно независимой переменной x, следует написать для этой функции многочлен Маклорена. Затем для оценки той погрешности, которая возникает в результате замены данной функции ее многочленом Маклорена, следует найти остаточный член R_{n} формулы Маклорена,

загрузка...
×