Касательная и нормаль к плоской кривой. Практикум по математическому анализу. Урок 35

Если плоская кривая отнесена к прямоугольной системе координат (рис. 1), то уравнения касательной и нормали к ней в точке \displaystyle M(x_{0},y_{0}) имеют вид:

\displaystyle y-y_{0}=y_{0}(x-x_{0});\; y-y_{0}=-\frac{1}{y'_{0}}(x-x_{0}),\; \; (1)


где \displaystyle y'_{0} — значение в точке \displaystyle x_{0} производной \displaystyle \frac{dy}{dx} из уравнения кривой.

Производные от функции, заданной параметрически. Практикум по математическому анализу. Урок 34

Если функция y от независимой переменной x задана через посредство вспомогательной переменной (параметра) t:

\displaystyle x=f(t),\: y=\varphi (t),


то производные от y по x определятся формулами:

\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}};\; y''=\frac{dy'}{dx}=\frac{\frac{dy'}{dt}}{\frac{dx}{dt}};\; y'''=\frac{dy''}{dx}=\frac{\frac{dy''}{dt}}{\frac{dx}{dt}};...\; \; (A)

Производные неявной функции. Практикум по математическому анализу. Урок 33

Если у есть неявная функция от x, т. е. задана уравнением \displaystyle f(x,y)=0, не разрешенным относительно y, то для нахождения производной \displaystyle \frac{dy}{dx} нужно продифференцировать по x обе части равенства, помня, что y есть функция от x и затем разрешить полученное равенство относительно искомой производной. Как правило, она будет зависеть от x и y; \displaystyle \frac{dy}{dx}=\varphi (x,y).

Производные высших порядков. Практикум по математическому анализу. Урок 32

Если \displaystyle y' есть производная от функции \displaystyle y=f(x), то производная от \displaystyle y' называется второй производной, или производной второго порядка от первоначальной функции y, и обозначается \displaystyle y'' или \displaystyle f''(x), или \displaystyle \frac{d^{2}y}{dx^{2}}.
Аналогично определяются и обозначаются производные любого порядка:

загрузка...

Логарифмическое дифференцирование. Практикум по математическому анализу. Урок 31

Дифференцирование многих функций значительно упрощается, если их предварительно прологарифмировать.
Если требуется найти \displaystyle y' из уравнения \displaystyle y=f(x), то можно:
а) логарифмировать обе части уравнения (по основанию /(e/));
\displaystyle \ln y=\ln f(x)=\varphi (x);
б) дифференцировать обе части полученного равенства, где \displaystyle \ln y есть сложная функция от /(x/),
\displaystyle \frac{y'}{y}=\varphi '(x) (согласно формуле 11);
в) заменить y его выражением через \displaystyle x и определить \displaystyle y':
\displaystyle y'=y\varphi '(x)=f(x)\varphi '(x).

Производные обратных тригонометрических функций. Практикум по математическому анализу. Урок 30

Общие формулы и их частные виды:

12) \displaystyle (\arcsin u)'=\frac{u'}{\sqrt{1-u^{2}}};
13) \displaystyle (\arccos u)'=-\frac{u'}{\sqrt{1-u^{2}}};
14) \displaystyle (arctg\: u)'=\frac{u'}{1+u^{2}};
15) \displaystyle (arcctg\: u)'=-\frac{u'}{1+u^{2}};
12а) \displaystyle (\arcsin x)'=\frac{1}{\sqrt{1-x^{2}}};
13а) \displaystyle (\arccos x)'=-\frac{1}{\sqrt{1-x^{2}}};
14а) \displaystyle (arctg\: x)'=\frac{1}{1+x^{2}};
15а) \displaystyle (arcctg\: x)'=-\frac{1}{1+x^{2}}.

Производные показательной и логарифмической функций. Практикум по математическому анализу. Урок 29

Общие формулы производных показательной и логарифмической функций и их частные виды:

10) \displaystyle (a^{u})'=a^{u}ln\: a\cdot u';
10а) \displaystyle (e^{u})'=e^{u}\cdot u';
10б) \displaystyle (a^{x})'=a^{x}\cdot ln\: a;
10в) \displaystyle (e^{x})'=e^{x};
11) \displaystyle (log_{a}\: u)'=\frac{u'}{u}\cdot log_{a}\: e;
11a) \displaystyle (ln\: u)'=\frac{u'}{u};
11б) \displaystyle (log_{a}\: x)'=\frac{1}{x}\cdot log_{a}\: e;
11в) \displaystyle (ln\: x)'=\frac{1}{x}.
загрузка...