Monthly Archives: Апрель 2016

Свойства треугольника. Решение задач. Готовимся к ЕГЭ по математике. Геометрия. Урок 12

Задача 3. В треугольнике VHR стороны VR = HR = 12, высота VD равна 6,(см. рис. 8). Найдите угол R. Ответ дайте в градусах.
treug_016

Свойства треугольника. Готовимся к ЕГЭ по математике. Геометрия. Урок 11

Сумма длин трёх сторон треугольника называется его периметром.
\displaystyle P_{\bigtriangleup ABC}=AB+BC+AC.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника.

Координаты вектора. Готовимся к ЕГЭ по математике. Геометрия. Урок 10

Пусть точки A и B имеют координаты \displaystyle A(x_{A};y_{A}),\; B(x_{B};y_{B}).
Координаты вектора \displaystyle \overrightarrow{AB} вычисляются по формуле
\displaystyle x=x_{B}-x_{A},\; y=y_{B}-y_{A}.
Длина вектора, или модуль вектора \displaystyle \overrightarrow{AB}\left \{ x;y \right \}:
\displaystyle \left | \overrightarrow{AB} \right |=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}=\sqrt{x^{2}+y^{2}}.

Векторы. Готовимся к ЕГЭ по математике. Геометрия. Урок 9

Отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом, называется вектором.
Вектор характеризуется модулем (длиной отрезка) и направлением. Два вектора, имеющие одинаковые модули и направления, равны.

загрузка...

Координаты точек. Решение задач. Готовимся к ЕГЭ по математике. Геометрия. Урок 8

Задача 3. Найдите ординату середины отрезка, соединяющего точки A(-4; 6) и B(2; 4) (см. рис. 6).
koord_012

Координаты точек. Готовимся к ЕГЭ по математике. Геометрия. Урок 7

Рассмотрим прямоугольную систему координат Oxy (см. рис. 1).
Длина отрезка AB, для которого известны координаты его концов \displaystyle A(x_{A};y_{A}) и \displaystyle B(x_{B};y_{B}), определяется по формуле \displaystyle \left | AB \right |=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}.

Площадь ромба (задачи на клетчатой бумаге). Готовимся к егэ по математике. Геометрия. Урок 6

Напомним, что ромб — это четырёхугольник, у которого все стороны равны. В ромбе диагонали взаимно перпендикулярны и делятся пополам точкой пересечения.
Площадь ромба равна половине произведения диагоналей: \displaystyle S=\frac{d_{1}d_{2}}{2}.

×