Окружность — это множество точек плоскости, расположенных на одинаковом расстоянии от данной точки (центра).
Отрезок, соединяющий центр окружности с любой точкой окружности, называется радиусом.
Прямая, имеющая с окружностью только одну общую точку, называется касательной, к — касательная (см. рис. 1).
Прямая, имеющая с окружностью две общие точки, называется секущей.
Свойства касательных и секущих.
1°. Касательная перпендикулярна радиусу, проведённому в точку касания.
2°. Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через центр окружности и эту общую точку.
Пусть дана окружность с центром , и — касательные, и — точки касания, следовательно = , (см. рис. 2).
3°. Если касательная пересекается с секущей, то квадрат отрезка касательной равен произведению расстояний от общей точки прямых до точек пересечения секущей с окружностью.
Пусть дана окружность с центром , — секущая, — касательная, — точка касания, следовательно, (см. рис. 3).
Хорда — это отрезок, концы которого лежат на окружности.
— хорда, — дуга (см. рис. 4).
Дуга — это часть окружности, соединяющая две точки окружности (см. рис. 4).
Задача 1. К окружности, вписанной в треугольник , проведены три касательные (см. рис. 5). Периметры отсечённых треугольников равны 5, 6, 8. Найдите периметр треугольника .
Решение.
Рассмотрим рис. 6. Периметр равен , также
Но отрезки как отрезки касательных к окружности, проведённых из одной точки. Тогда
Ответ: 19.