Многоугольники. Готовимся к ОГЭ по математике. Модуль 2. Урок 53

Бывают не только треугольники и четырёхугольники. Иногда встречаются и тринадцатиугольники, и даже 523-угольники. Все многоугольники (n-угольники) подчиняются некоторым общим законам: например, сумма углов выпуклого n-угольника равна \displaystyle (n-2)\cdot 180^{\circ}. Так, для треугольника сумма углов \displaystyle (3-2)\cdot 180^{\circ}=180^{\circ}, для четырёхугольника — \displaystyle (4-2)\cdot 180^{\circ}=360^{\circ}, для 13-угольника — \displaystyle (13-2)\cdot 180^{\circ}=1980^{\circ}.
Правильным многоугольником называется многоугольник, у которого все стороны равны и все углы равны.
На рисунке 1 можно увидеть правильный пятиугольник.
mnogougol_036

Рис.1

Задача 1. Сумма углов выпуклого n-угольника равна 540°. Найдите количество сторон n-угольника.
Решение.
\displaystyle (n-2)\cdot 180^{\circ}=540^{\circ},
\displaystyle n-2=3,\; n=5.
Ответ: 5


Поделиться ссылкой:
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • Одноклассники
  • Яндекс.Закладки
  • Blogger
  • RSS
  • Блог Я.ру
  • Сто закладок
  • Блог Li.ру
  • Yahoo! Bookmarks
  • БобрДобр
  • MySpace
  • Reddit
  • FriendFeed
  • В закладки Google
  • Google Buzz
  • LinkedIn
  • StumbleUpon
  • Technorati
  • del.icio.us
  • Digg
  • MisterWong.RU
  • Memori.ru
  • МоёМесто.ru
  • 豆瓣
  • 豆瓣九点

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

загрузка...

Наш сайт находят по фразам:

×