Скорость и ускорение криволинейного движения. Практикум по математическому анализу. Урок 43

Скорость и ускорение криволинейного движения. Практикум по математическому анализу. Урок 43

Если в любой момент времени t положение движущейся точки M определяется ее радиусом-вектором \overrightarrow{OM}=\vec{r}(t), то \dot{\vec{r}} есть вектор скорости, \ddot{\vec{r}} есть вектор ускорения, а годограф вектора \vec{r} есть траектория движения точки M.
Вектор скорости \overrightarrow{OM}=\vec{r}(t) направлен по касательной к траектории, а его модуль равен производной от пути по времени \displaystyle \left |\dot{\vec{r}} \right |=\frac{ds}{dt}.

Решение задач на уравнение касательной прямой и нормальной плоскости. Практикум по математическому анализу. Урок 42

Решение задач на уравнение касательной прямой и нормальной плоскости. Практикум по математическому анализу. Урок 42

Если x=x(t),y=y(t),z=z(t) — параметрические уравнения кривой и M_{0}(x_{0},y_{0},z_{0}) - точка этой кривой, то касательная прямая к этой кривой в точке M_{0} определяется уравнениями
\displaystyle \frac{x-x_{0}}{\dot{x_{0}}}=\frac{y-y_{0}}{\dot{y_{0}}}=\frac{z-z_{0}}{\dot{z_{0}}}\; \; \; \; (1)
а нормальная плоскость (перпендикулярная к касательной) определяется уравнением
\displaystyle (x-x_{0})\dot{x_{0}}+(y-y_{0})\dot{y_{0}}+(z-z_{0})\dot{z_{0}}=0\; \; \; \; (2)

Вектор-функция скалярного аргумента и ее дифференцирование. Касательная к пространственной кривой. Математический анализ. Урок 41

Вектор-функция скалярного аргумента и ее дифференцирование. Касательная к пространственной кривой. Математический анализ. Урок 41

Переменный вектор \vec{r} называется вектор-функцией скалярного аргумента t, если каждому рассматриваемому числовому значению t соответствует определенное значение \vec{r} (т. е. определенный модуль и определенное направление вектора \vec{r}).

Если начало переменного вектора \vec{r}=\vec{r}(t) неизменно помещается в начале координат O, т. е. если \vec{r}(t) есть радиус-вектор \vec{OM}, то при изменении скаляра t его подвижный конец M описывает некоторую линию, которая называется годографом этого вектора.

Дифференциал функции (примеры). Практикум по математическому анализу. Урок 40

Дифференциал функции (примеры). Практикум по математическому анализу. Урок 40

Пример 1. Вычислить приближенное значение:
1) \sqrt[4]{17}; 2) arctg\, 0,98; 3) \sin 29^{\circ}.
Решение. Если требуется вычислить f(x_{1}) и если проще вычислить f(x_{0}) и f'(x_{0}) , то при достаточно малой по абсолютному значению разности x_{1}-x_{0}=dx можно заменить приращение функции ее дифференциалом f(x_{1})-f(x_{0})\approx f'(x_{0})dx и отсюда найти приближенное значение искомой величины по формуле

Дифференциал функции. Практикум по математическому анализу. Урок 39

Дифференциал функции. Практикум по математическому анализу. Урок 39

Из определений производной \displaystyle y'=\underset{\Delta x\rightarrow 0}{\textrm{lim}}\frac{\Delta y}{\Delta x} и предела переменной следует, что \displaystyle \frac{\Delta y}{\Delta x}=y'+\varepsilon или \displaystyle \Delta y=y'\Delta x+\varepsilon \Delta x, где \displaystyle \varepsilon \to 0 при \displaystyle \Delta x \to 0, т. е. что приращение функции можно разбить на две части.
Главная часть приращения функции, линейная относительно приращения независимой переменной, называется дифференциалом функции и обозначается знаком d:

Скорость изменения переменной величины. Практикум по математическому анализу. Урок 38

Скорость изменения переменной величины. Практикум по математическому анализу. Урок 38

Скорость изменения переменной величины. Скорость и ускорение прямолинейного движения.
Если величина z изменяется с течением времени то скорость ее изменения определяется производной \displaystyle \frac{dz}{dt}.
Зная зависимость между двумя переменными x и y, можно найти зависимость между скоростями их изменения по формуле производной сложной функции:

\displaystyle \frac{dz}{dt}=\frac{dy}{dx}\cdot \frac{dx}{dt}.

Решение задач на вычисление площадей и объемов тел вращения. Геометрия. Видеоурок №4

Решение задач на вычисление площадей и объемов тел вращения. Геометрия. Видеоурок №4

В данном видео предлагается решение следующих задач:
1)Радиус основания конуса равен R. Образующие AC и BC взаимно перпендикулярны и делят площадь боковой поверхности в отношении 1:2. Найти объем конуса.
2) В конус вписана треугольная пирамида. Все боковые ребра пирамиды попарно взаимно перпендикулярны. Найти угол между высотой конуса и образующими.
3) Около шара описан усеченный конус. Площадь большего основания усеченного конуса в 4 раза больше площади другого основания. Найти угол между образующей и основанием конуса.

...
×