Решение типовых задач по теме "Задание плоскости в пространстве". Часть 2
Задача №1. Определить направляющие косинусы вектора, направленного из начала координат перпендикулярно к плоскости x-2y+2z-9=0.
Решение. Приводим уравнение плоскости к нормальному виду. Нормирующий множитель:
Умножая данное уравнение на , получим нормальное уравнение плоскости:
Здесь
суть направляющие косинусы нормального вектора
данной плоскости.
Ответ: .
Задача №2. Найти расстояние плоскости от начала координат и углы, которые образует с осями координат перпендикуляр, опущенный из начала координат на плоскость.
Решения задач №1 и №2 подробно изложены в следующем видео
Задача №3. Уравнение плоскости 11х-7у-9z+15=0 написать в векторной форме в общем и в нормальном видах.
Задача №4. Составить уравнение плоскости, перпендикулярной к вектору и отстоящей от начала координат на расстояние р=3.
Решение. Уравнение плоскости, параллельной искомой и проходящей через начало координат, имеет вид: Зх+4у+12z=0.
Отклонение любой точки М(х;у;z) искомой плоскости Зх+4у+12z=0 равно ±3.
Тогда, воспользовавшись формулой
будем иметь:
Откуда Зх+4у+12z±39=0 — искомые уравнения плоскости.
Ответ: Зх+4у+12z±39=0.
Решения задач №3 и №4 подробно изложены в следующем видео
Задача №5. Через точки М(3;-2;1) и N(0;3;5) провести плоскость, которая отсекала бы на осях Ох и Оу равные положительные отрезки.
Задача №6. Найти направляющие косинусы прямой, перпендикулярной к плоскости, которая отсекает на осях координат отрезки а=-18, b=-9, с=9.
Решение. Воспользовавшись уравнением плоскости в отрезках
составим уравнение плоскости:
или
Приведем общее уравнение плоскости к нормальному виду: нормирующий множитель
берем со знаком минус, так как в уравнении плоскости D= 18>0:
Теперь умножим уравнение (1) на . Получим:
Направляющие косинусы перпендикуляра к плоскости имеют следующие значения:
Ответ:
Решения задач №6 и №7 подробно изложены в следующем видео