Решение типовых задач по теме "Задание плоскости в пространстве". Часть 3
Задача №1. Даны две параллельные плоскости 3x + 4y-2z-1=0 и 6x+8y-4z-3=0.
Найти среднюю плоскость (т.е. параллельную данным плоскостям и расположенную между ними на равных расстояниях от них).
Решение. Пусть точка принадлежит искомой плоскости. Определим ее отклонение от каждой из данных плоскостей по формуле:
Так как точка М лежит между данными плоскостями, а плоскости расположены по одну сторону от начала координат.
, то отклонения и будут противоположных знаков:
— искомое уравнение.
Ответ: .
Задача №2. Найти плоскость, параллельную двум данным параллельным плоскостям
2х+3y-z-1=0 и 4x+6y-2z+3=0 и делящую расстояние между ними в отношении 2:3.
Решения задач №1 и №2 подробно изложены в следующем видео
Задача №3. Найти плоскость, проходящую через точку (2;-1;1) перпендикулярно к линии пересечения двух плоскостей: 3x-y-z+1=0, x-y+2z+1=0.
Задача №4. На оси Ох найти точку, равноудаленную от точки М(0;1;-2) и от плоскости бх+Зy-2z-9=0.
Решение. Точка, лежащая на оси Ох, имеет ординату и аппликату, равными 0. Таким образом, искомая точка N(х;0;0). Ее расстояние до точки М:
ее расстояние до плоскости:
Согласно условию Имеем:
Условию удовлетворяют две точки:
Ответ:
Решения задач №3 и №4 подробно изложены в следующем видео
Задача №5. Найти геометрическое место точек, отклонения которых от плоскости 12x-15y+16z-10=0 равно ±5.
Решение. Возьмем произвольную точку М(x;у;z) и определим ее отклонение до данной плоскости:
Согласно условию это отклонение равно ±5. Получим два уравнения:
или после упрощения
Мы получили две плоскости, параллельные данной плоскости и расположенные по разные стороны от нее на расстоянии 5 единиц.
Ответ:
Задача №6. Составить уравнение геометрического места точек, равноудаленных от двух параллельных плоскостей: x-5y+3z+5=0 и 2х-10y+6z+9=0.
Решения задач №3 и №4 подробно изложены в следующем видео
Задача №7. Составить уравнения плоскостей, делящих по¬полам двугранные углы, образованные двумя пересекающимися плоскостями: 5x-2y+5z-3=0 и 2x+y-7z+2=0.
Задача №8. Определить, лежат ли точки М(1;2;-1) и N(-3;1;2) в одном, в смежных или вертикальных двугранных углах, образованных при пересечении двух плоскостей:
1) 2х-3y+z-3=0, х-у-2z+4=0;
2) 5х-2y+z-1=0, 6x-Зу+2z-1=0;
3) 3х+у+ 11z-3=0, 4х+2y-5z+1=0.
Решения задач №5 и №6 подробно изложены в следующем видео
Задача №9. Установить, какие из следующих пар плоскостей пересекаются, параллельны или совпадают:
1) Зх+у-5z-12=0 и 2x+6z-3=0;
2) 2х-Зу+z+8=0 и 4х-6у-Зz-7=0;
3) 5х+2у-3z-5=0 и 10x+4y-6z+5=0;
4) Зx+7y+z+4=0 и 9x+21y+3z+12=0.
Задача №10. Даны уравнения трех граней параллелепипеда x-3y+4z-12=0, y+2z-5=0, x+4=0, и одна из его вершин (4;-3;2). Найти уравнения трех других граней параллелепипеда.
Решения задач №7 и №8 подробно изложены в следующем видео