Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения (рис. 1) по формуле
где и — угловые коэффициенты касательных к кривым в точке их пересечения ,
т. е. частные значения в точке производных от по из уравнений этих кривых:
Рис.1
Пример 1. Найти углы, под которыми пересекаются следующие линии:
1) прямая и парабола ;
2) эллипс и парабола ;
3) синусоида и косинусоида .
Решение.
1) Совместно решая уравнения параболы и прямой, находим, что они пересекаются в двух точках: и , рис.2.
Рис.2
Далее находим производную от по из уравнения параболы: и определяем угловые коэффициенты касательных к параболе в точках и , как частные значения этой производной:
Угловой коэффициент прямой один и тот же во всех ее точках; у данной прямой он равен — 1.
Согласно формуле (2) получим
2) Решая совместно уравнения кривых, находим их общие точки: и рис.3. Затем определяем угловые коэффициенты и касательных в любой точке эллипса и параболы как производные от по из их уравнений
Рис.3
Подставляя координаты точки , получим и . Следовательно, в точке :
Под таким же углом кривые пересекаются и в точке вследствие их симметричности относительно оси .
В точке имеем: , следовательно, в точке кривые имеют общую касательную, т. е. касаются друг друга. В этой точке угол между кривыми равен нулю.
3) Абсциссы точек пересечения кривых (рис.4) определяются уравнением , решая которое, получим
Дифференцированием находим угловые коэффициенты касательных к синусоиде и косинусоиде:
Рис.4
Искомый угол между кривыми определяем по общей формуле (2)
Положительному знаку соответствует острый угол , отрицательному — тупой, смежный с ним угол .