Решение неравенств с модулем методом интервалов

Пример 7. Решить неравенство \left | x+2 \right |+\left | x-2 \right |<6. Решение. При решении исходного неравенства используем метод интервалов для модулей. Отметим на числовой прямой точки, в которых выражения, находящиеся под знаками модулей, обращаются в нуль. Это точки x=-2, x=2 . Вся числовая прямая разбивается этими точками на три интервала (три промежутка): \left ( -\infty ;-2 \right ) (1 интервал), \left [ -2;2 \right ] (2 интервал), \left ( 2;+\infty \right ) (3 интервал). Приведем две формы записи решения исходного неравенства.
1 форма записи решения.
На 1 интервале \left ( -\infty ;-2 \right ) по определению модуля имеем

\left | x+2 \right |=-\left ( x+2 \right )=-x-2;\; \left | x-2 \right |=-\left ( x-2 \right )=-x+2.


Значит, на 1 интервале исходное неравенство равносильно такому:

-x-2-x+2<6\Leftrightarrow -2x<6 \Leftrightarrow x>-3.


Так как рассматривается интервал \left ( -\infty ;-2 \right ) , то в множество решений входит пересечение множеств: \left ( -\infty ;-2 \right )\bigcap \left ( -3;+\infty \right )=\left ( -3;-2 \right ) — решение исходного неравенства на 1 интервале.
На отрезке \left [ -2;2 \right ] (2 интервал)

\left | x+2 \right |=x+2;\; \left | x-2 \right |=-\left ( x-2 \right )=-x+2


и мы имеем x+2-x+2<6 \Leftrightarrow 4<6 , т. е. верное числовое неравенство. Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решений, т. е.  x\in \left [ -2;2 \right ] — решение на 2 интервале. На 3 интервале \left ( 2;+\infty \right ) \left | x+2 \right |=x+2;\; \left | x-2 \right |=x-2 , и мы получаем  x+2+x-2<6 \Leftrightarrow 2x<6 \Leftrightarrow x<3 . Поскольку рассматривается интервал  x\in \left ( 2;+\infty \right ) , то в множество решений входит пересечение множеств  \left ( -\infty ;3 \right )\bigcap \left ( 2;+\infty \right )=\left ( 2;3 \right ) — решение на 3 интервале. Объединяя полученные результаты, делаем вывод: исходное неравенство выполняется при

x\in \left ( -3;-2 \right )\bigcup \left [ -2;2 \right ]\bigcup \left ( 2;3 \right )=\left ( -3;3 \right ).

Таким образом,  x\in \left ( -3;3 \right ) — решение исходного неравенства. Ответ:  x\in \left ( -3;3 \right ) .
2 форма записи решения. Рассмотрим три случая:

1)\: \left\{\begin{matrix} x<-2,\\ -(x+2)-(x-2)<6 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x<-2,\\ x>-3 \end{matrix}\right.\Leftrightarrow x\in (-3;-2);


2)\: \left\{\begin{matrix} -2\leq x\leq 2,\\ x+2-(x-2)<6 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2\leq x\leq 2,\\ 4<6 \end{matrix}\right.\Leftrightarrow x\in \left [ -2;2 \right ];

3)\: \left\{\begin{matrix} x>2,\\ x+2+x-2<6 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>2,\\ x<3 \end{matrix}\right.\Leftrightarrow x\in (2;3).

Объединяя найденные множества значений x , получаем

x\in (-3;-2)\bigcup \left [ -2;2 \right ]\bigcup (2;3)=(-3;3).

Ответ:  x\in (-3;3).
Пример 8. Решить неравенство  \left | x-2 \right |^{3}+\left | x-2 \right |>2 .
Решение.
Сделав замену переменной  \left | x-2 \right |=t,\; t\geq 0, получаем

\left\{\begin{matrix} t^{3}+t>2,\\ t\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t^{3}+t-2>0\\ t\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (t-1)(t^{2}+t+2)>0,\\ t\geq 0 \end{matrix}\right.\Leftrightarrow


\Leftrightarrow \left\{\begin{matrix} t-1>0,\\ t\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t>1,\\ t\geq 0 \end{matrix}\right.\Leftrightarrow t>1.


Возвращаясь к старой переменной, получаем, что исходное неравенство эквивалентно следующему:

\left | x-2 \right |>1\Leftrightarrow \left [ \begin{matrix} x-2>1,\\ x-2<-1 \end{matrix} \right.\Leftrightarrow \left [ \begin{matrix} x>3,\\ x<1 \end{matrix} \right.\Leftrightarrow x\in (-\infty ;1)\bigcup (3;\infty ).

Ответ:  x\in (-\infty ;1)\bigcup (3;\infty ).

загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Наш сайт находят по фразам: